and (44) gives

$$
\begin{equation*}
a_{1}=\left(\frac{R_{c}-R_{0}}{R_{c}}-a_{3}\right) / R_{c}^{2} \tag{45}
\end{equation*}
$$

The second condition relates the radial wafer deflection to the constraining pressure. If $\boldsymbol{\delta}$ is the radial deflection at the mid-meridian plane, then

$$
\begin{equation*}
8=R_{c}-R_{o}=\left(5.32 \times 10^{-8}\right) P_{c} \tag{46}
\end{equation*}
$$

where P_{c} is the restraining pressure exerted on the wafer, at $Z=0$, by the containing ring. The numerical factor appearing in (46) is obtained from an application of the well-known Lame equation for the elastic deformation of a thick-wall cylinder. These equations can also be used to describe the amount of tangential strain Gecurring at the outer surface of the containing ring, due to the influence of the internal pressure P_{C}. The relation found for the ring used in this program is

$$
\epsilon_{\theta c}=\left(3.02 \times 10^{-9}\right) P_{B}
$$

